Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
J Cancer Res Clin Oncol ; 150(4): 185, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598007

ABSTRACT

PURPOSE: This study aims to assess the predictive value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiological features and the maximum standardized uptake value (SUVmax) in determining the presence of spread through air spaces (STAS) in clinical-stage IA non-small cell lung cancer (NSCLC). METHODS: A retrospective analysis was conducted on 180 cases of NSCLC with postoperative pathological assessment of STAS status, spanning from September 2019 to September 2023. Of these, 116 cases from hospital one comprised the training set, while 64 cases from hospital two formed the testing set. The clinical information, tumor SUVmax, and 13 related CT features were analyzed. Subgroup analysis was carried out based on tumor density type. In the training set, univariable and multivariable logistic regression analyses were employed to identify the most significant variables. A multivariable logistic regression model was constructed and the corresponding nomogram was developed to predict STAS in NSCLC, and its diagnostic efficacy was evaluated in the testing set. RESULTS: SUVmax, consolidation-to-tumor ratio (CTR), and lobulation sign emerged as the best combination of variables for predicting STAS in NSCLC. Among these, SUVmax and CTR were identified as independent predictors for STAS prediction. The constructed prediction model demonstrated area under the curve (AUC) values of 0.796 and 0.821 in the training and testing sets, respectively. Subgroup analysis revealed a 2.69 times higher STAS-positive rate in solid nodules compared to part-solid nodules. SUVmax was an independent predictor for predicting STAS in solid nodular NSCLC, while CTR and an emphysema background were independent predictors for STAS in part-solid nodular NSCLC. CONCLUSION: Our nomogram based on preoperative 18F-FDG PET/CT radiological features and SUVmax effectively predicts STAS status in clinical-stage IA NSCLC. Furthermore, our study highlights that metabolic parameters and CT variables associated with STAS differ between solid and part-solid nodular NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Nomograms , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery
2.
J Imaging Inform Med ; 37(2): 520-535, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343212

ABSTRACT

The study aims to investigate the value of intratumoral and peritumoral radiomics and clinical-radiological features for predicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). A total of 336 NSCLC patients from our hospital were randomly divided into the training cohort (n = 236) and the internal validation cohort (n = 100) at a ratio of 7:3, and 69 patients from the other two external hospitals were collected as the external validation cohort. Univariate and multivariate analyses were used to select clinical-radiological features and construct a clinical model. The GTV, PTV5, PTV10, PTV15, PTV20, GPTV5, GPTV10, GPTV15, and GPTV20 models were constructed based on intratumoral and peritumoral (5 mm, 10 mm, 15 mm, 20 mm) radiomics features. Additionally, the radscore of the optimal radiomics model and clinical-radiological predictors were used to construct a combined model and plot a nomogram. Lastly, the ROC curve and AUC value were used to evaluate the diagnostic performance of the model. Tumor density type (OR = 6.738) and distal ribbon sign (OR = 5.141) were independent risk factors for the occurrence of STAS. The GPTV10 model outperformed the other radiomics models, and its AUC values were 0.887, 0.876, and 0.868 in the three cohorts. The AUC values of the combined model constructed based on GPTV10 radscore and clinical-radiological predictors were 0.901, 0.875, and 0.878. DeLong test results revealed that the combined model was superior to the clinical model in the three cohorts. The nomogram based on GPTV10 radscore and clinical-radiological features exhibited high predictive efficiency for STAS status in NSCLC.

3.
Transl Cancer Res ; 13(1): 462-470, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38410233

ABSTRACT

Background and Objective: In lung cancer, visceral pleural invasion (VPI) affects the selection of surgical methods, the scope of lymph node dissection and the need for adjuvant chemotherapy. Preoperative or intraoperative prediction and diagnosis of VPI of lung cancer is helpful for choosing the best treatment plan and improving the prognosis of patients. This review aims to summarize the research progress of the clinical significance of VPI assessment, the intraoperative diagnosis technology of VPI, and various imaging methods for preoperative prediction of VPI. The diagnostic efficacy, advantages and disadvantages of various methods were summarized. The challenges and prospects for future research will also be discussed. Methods: A comprehensive, non-systematic review of the latest literature was carried out in order to investigate the progress of predicting VPI. PubMed database was being examined and the last run was on 4 August 2022. Key Content and Findings: The pathological diagnosis and clinical significance of VPI of lung cancer were discussed in this review. The research progress of prediction and diagnosis of VPI in recent years was summarized. The results showed that preoperative imaging examination and intraoperative freezing pathology were of great value. Conclusions: VPI is one of the adverse prognostic factors in patients with lung cancer. Accurate prediction of VPI status before surgery can provide guidance and help for the selection of clinical operation and postoperative treatment. There are some advantages and limitations in predicting VPI based on traditional computed tomography (CT) signs, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT and magnetic resonance imaging (MRI) techniques. As an emerging technology, radiomics and deep learning show great potential and represent the future research direction.

4.
Diagn Interv Radiol ; 29(6): 771-785, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37724737

ABSTRACT

PURPOSE: To investigate the value of clinical characteristics and radiological features for predicting spread through air spaces (STAS) in patients with clinical stage IA non-small cell lung cancer (NSCLC). METHODS: A total of 336 patients with NSCLC from our hospital were randomly divided into two groups, i.e., the training cohort (n = 236) and the internal validation cohort (n = 100) (7:3 ratio). Furthermore, 69 patients from two other hospitals were collected as the external validation cohort. Eight clinical patient characteristics were recorded, and 20 tumor radiological features were quantitatively measured and qualitatively analyzed. In the training cohort, the differences in clinical characteristics and radiological features were compared using univariate and multivariate analysis. A nomogram was created, and the predictive efficacy of the model was evaluated in the validation cohorts. The receiver operating characteristic curve and area under the curve (AUC) value were used to evaluate the discriminative ability of the model. In addition, the Hosmer-Lemeshow test and calibration curve were used to evaluate the goodness-of-fit of the model, and the decision curve was used to analyze the model's clinical application value. RESULTS: The best predictors included gender, the carcinoembryonic antigen (CEA), consolidation-to-tumor ratio (CTR), density type, and distal ribbon sign. Among these, the tumor density type [odds ratio (OR): 6.738] and distal ribbon sign (OR: 5.141) were independent risk factors for predicting the STAS status. Moreover, three different STAS prediction models were constructed, i.e., a clinical, radiological, and combined model. The clinical model comprised gender and the CEA, the radiological model included the CTR, density type, and distal ribbon sign, and the combined model comprised the above two models. A DeLong test results revealed that the combined model was superior to the clinical model in all three cohorts and superior to the radiological model in the external validation cohort; the cohort AUC values were 0.874, 0.822, and 0.810, respectively. The results also showed that the combined model had the highest diagnostic efficacy among the models. The Hosmer-Lemeshow test showed that the combined model showed a good fit in all three cohorts, and the calibration curve showed that the predicted probability value of the combined model was in good agreement with the actual STAS status. Finally, the decision curve showed that the combined model had a better clinical application value than the clinical and radiological models. CONCLUSION: The nomogram created in this study, based on clinical characteristics and radiological features, has a high diagnostic efficiency for predicting the STAS status in patients with clinical stage IA NSCLC and may support the creation of personalized treatment strategies before surgery.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoembryonic Antigen , Nomograms , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Radiography , Retrospective Studies
5.
Transl Cancer Res ; 12(3): 624-630, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37033348

ABSTRACT

Background and Objective: In 2015, the World Health Organization (WHO) officially defined spread through air spaces (STAS) as the fourth type of lung adenocarcinoma (ADC) invasion. STAS is recognized to have effects on the survival rate and the prognosis of patients who have received lung cancer surgery. Given that postoperative pathological diagnosis is the gold standard for STAS diagnosis, but the pathological findings cannot guide the selection of preoperative surgical plan, it is essential to accurately predict STAS before surgery to achieve optimal outcomes. Methods: A comprehensive, non-systematic review of the latest literature was carried out in order to define the advancement of imaging in predicting STAS. PubMed database was being examined and the last run was on 27 June 2022. Key Content and Findings: In this review, the definition and the clinical significance of predicting STAS for lung cancer patients were being discussed. By summarizing the STAS prediction efficacy from imaging-related research, the results suggest that computed tomography (CT), 18-fluorine-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT), radiomics and deep learning (DL) are of great value in predicting STAS. Conclusions: STAS is an important invasion type of lung cancer, affecting the survival prognosis of patients. Preoperative CT and 18F-FDG PET/CT have certain value in predicting the status of STAS, assisting clinicians in selecting an optimal surgical approach and postsurgical treatment. The prediction of STAS based on radiomics and DL can represent a future research direction.

6.
Diagn Interv Radiol ; 29(2): 379-389, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988049

ABSTRACT

PURPOSE: Preoperative prediction of visceral pleural invasion (VPI) is important because it enables thoracic surgeons to choose appropriate surgical plans. This study aimed to develop and validate a multivariate logistic regression model incorporating the maximum standardized uptake value (SUVmax) and valuable computed tomography (CT) signs for the non-invasive prediction of VPI status in subpleural clinical stage IA lung adenocarcinoma patients before surgery. METHODS: A total of 140 patients with subpleural clinical stage IA peripheral lung adenocarcinoma were recruited and divided into a training set (n = 98) and a validation set (n = 42), according to the positron emission tomography/CT examination temporal sequence, with a 7:3 ratio. Next, VPI-positive and VPI-negative groups were formed based on the pathological results. In the training set, the clinical information, the SUVmax, the relationship between the tumor and the pleura, and the CT features were analyzed using univariate analysis. The variables with significant differences were included in the multivariate analysis to construct a prediction model. A nomogram based on multivariate analysis was developed, and its predictive performance was verified in the validation set. RESULTS: The size of the solid component, the consolidation-to-tumor ratio, the solid component pleural contact length, the SUVmax, the density type, the pleural indentation, the spiculation, and the vascular convergence sign demonstrated significant differences between VPI-positive (n = 40) and VPI-negative (n = 58) cases on univariate analysis in the training set. A multivariate logistic regression model incorporated the SUVmax [odds ratio (OR): 1.753, P = 0.002], the solid component pleural contact length (OR: 1.101, P = 0.034), the pleural indentation (OR: 5.075, P = 0.041), and the vascular convergence sign (OR: 13.324, P = 0.025) as the best combination of predictors, which were all independent risk factors for VPI in the training group. The nomogram indicated promising discrimination, with an area under the curve value of 0.892 [95% confidence interval (CI), 0.813-0.946] in the training set and 0.885 (95% CI, 0.748-0.962) in the validation set. The calibration curve demonstrated that its predicted probabilities were in acceptable agreement with the actual probability. The decision curve analysis illustrated that the current nomogram would add more net benefit. CONCLUSION: The nomogram integrating the SUVmax and the CT features could non-invasively predict VPI status before surgery in subpleural clinical stage IA lung adenocarcinoma patients.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Fluorodeoxyglucose F18 , Pleura/diagnostic imaging , Pleura/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery , Adenocarcinoma/pathology , Neoplasm Invasiveness/pathology , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/surgery , Adenocarcinoma of Lung/pathology , Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed/methods , Multivariate Analysis , Retrospective Studies , Neoplasm Staging
SELECTION OF CITATIONS
SEARCH DETAIL
...